2019年已发表和印刷中论文目录

发布时间:2020-01-06 |      】 | 【打印】 【关闭

正式发表论文

1. Duan JP*, Wu PL, Ma ZG, Duan YW, 2019: Unprecedented recent late-summer warm extremes recorded in tree-ring density on the Tibetan Plateau. Environmental Research Letters, https://doi.org/10.1088/1748-9326/ab5e01.

2. Zhang, Anzhi, Gensuo Jia, Hesong Wang, 2019: Improving meteorological drought monitoring capability over tropical and subtropical water limited ecosystems: Evaluation and ensemble of the Microwave Integrated Drought Index. Environmental Research Letters 14(4): 044025. doi: 10.1088/1748-9326/ab005e.

3. Zhao, Huichen, Gensuo Jia, Hesong Wang, Anzhi Zhang, Xiyan Xu, 2019. Seasonal and interannual variations in carbon fluxes in East Asia semi-arid grasslands, Science of the Total Environment 668: 1128-1138. doi: 10.1016/j.scitotenv.2019.02.378.

4. Luo D*, Chen X, Overland J, Simmonds I, Wu Y, Zhang P. Weakened potential vorticity barrier linked to recent winter Arctic sea ice loss and midlatitude cold extremes. J Climate. 2019; 32, 4235-4261. https://doi.org/10.1175/JCLI-D-18-0449.1.

5. Yang, Q, Ma Z*, Wu P, Klingaman NP, Zhang L, 2019: Interdecadal Seesaw of Precipitation Variability between North China and the Southwest United States. Journal of Climate, 32, 2951-2968.

6. Bian Qingyun, Xu Zhongfeng, Zhao Long, Zhang Yongfei, Zheng Hui, Shi Chunxiang, Zhang Shuai, Xie Conghui, Yang Zong-Liang*. (2019) Evaluation and Intercomparison of Multiple Snow Water Equivalent Products over the Tibetan Plateau. Journal of Hydrometeorology, 20, 2043–2055. https://doi.org/10.1175/JHM-D-19-0011.1. 

7. Lv M, Ma Z*, Chen L, and Peng S, 2019: Evapotranspiration reconstruction based on land surface models and observed water budget components while considering irrigation. Journal of Hydrometeorology, 2163–2183.

8. XU Zhongfeng, Ying HAN, and Zongliang YANG, 2019: Dynamical downscaling of regional climate: A review of methods and limitations. Science China Earth Sciences, 129. https://doi.org/10.1007/s11430-018-9261-5.

9. Zha Jinlin, Zhao Deming, Wu Jian, Zhang Pengwei, 2019: Numerical simulation of the effects of land use and cover change on the near-surface wind speed over Eastern China. Climate Dynamics, 53: 1783-1803, https://doi.org/10.1007/s00382-019-04737-w.

10. Chen, L., Li, Y., Chen, F. et al., 2019: Using 4-km WRF CONUS simulations to assess impacts of the surface coupling strength on regional climate simulation. Climate Dynamics, 53, 6397.

11. Duan JP*, Ma ZG, Yuan NM, Li L, 2019: Extremes in the magnitude of annual temperature cycle on the Tibetan Plateau over the past three centuries. Climate Dynamics, 52, 3599-3608.

12. Yuan N.*, Huang Y., Duan J., Zhu C., Xoplaki E., Luterbacher J., 2019: On climate prediction: how much can we expect from climate memory? Climate Dynamics, 52, 855-864.

13. Duan JP*, Ma ZG, Li L, Zheng ZY, 2019: August-September Temperature Variability on the Tibetan Plateau: Past, Present, and Future. Journal of Geophysical Research: Atmospheres, 124, 6057-6068.

14. Duan JP*, Li L, Ma ZG, Chen L, 2019: Post-industrial late summer warming recorded in tree-ringdensity in the eastern Tibetan Plateau. International Journal of Climatology, 1-10.

15. Lv M, Ma Z*, Li M, Zheng Z, 2019: Quantitative analysis of terrestrial water storage changes under the Grain for Green program in the Yellow River basin. Journal of Geophysical Research: Atmospheres, 124, 1336–1351.

16. XU Zhongfeng, Ying HAN, 2019: Comments on ‘DISO: A rethink of Taylor diagram’. International Journal of Climatology. https://doi.org/10.1002/joc.6359.

17. Wu, Y. F.*, Y. J. Xia, R. J. Huang, Z. Z. Deng, P. Tian, X. A. Xia, and R. J. Zhang*, 2019: A study of the morphology and effective density of externally mixed black carbon aerosols in ambient air using a size-resolved single-particle soot photometer (SP2). Atmos. Meas. Tech., 12, 4347–4359, https://doi.org/10.5194/amt-12-4347-2019.

18. Luo D*, Zhang W, Zhong L, Dai A. A nonlinear theory of atmospheric blocking: A potential vorticity gradient view. J Atmos Sci. 2019; 76, 2399-2427. https://doi.org/10.1175/JAS-D-18-0324.1.

19. Zitong Shi, Gensuo Jia, Yonghong Hu, Yuyu Zhou, 2019: The contribution of intensified urbanization effects on surface warming trend in China, Theoretical and Applied Climatology 138:1125–1137, doi: 10.1007/s00704-019-02892-y.

20. Zha Jinlin, Wu Jian , Zhao Deming , Tang Jianping , 2019: A possible recovery of the near-surface wind speed in Eastern China during winter after 2000 and the potential causes. Theoretical and Applied Climatology, 136: 119-134, doi: 10.1007/s00704-018-2471-z.

21. Zhao Deming, Wu Jian, 2019: Comparisons of urban-related warming in Beijing using different methods to calculate the daily mean temperature. Science China: Earth Sciences, 62, 693-702, https://doi.org/10.1007/s11430-018-9298-x.

22. Duan JP*, Wu PL, Ma ZG, 2019: Reconciling the discrepancy of post-volcanic cooling estimated from tree-ring reconstructions and model simulations over the Tibetan Plateau. Atmosphere, 10, 738.

23. Yang  F Q, Dan L*, Peng J, Yang X J, Li YY,  Gao DD, 2019: Subdaily to seasonal change of surface energy and water flux of the Haihe River Basin in China: Noah and Noah-MP assessment. Adv. Atmos. Sci., 36(1), 79-92,https://doi.org/10.1007/s00376-018-8035-4.

24. Zhao Deming, Wu Jian (2019) Evaluating land use change impacts on rainfall in various categories using the WRF-mosaic approach. Atmospheric Science Letters, 20: e870, https://doi: 10.1002/asl.870.

25. Duan JP*, Ma ZG, Wu PL, et al., 2019: Detection of human influences on temperature seasonality from the nineteenth century. Nature Sustainability, 2, 484-490.

26. Lv M, Ma Z*, Peng S, 2019: Responses of terrestrial water cycle components to afforestation within and around the Yellow River basin. Atmospheric and Oceanic Science Letters, 12, 116–123.

27. Qian, C., X. Zhang, and Z. Li, 2019: Linear trends in temperature extremes in China, with an emphasis on non-Gaussian and serially dependent characteristics. Climate Dynamics, 53(1), 533–550

28. Qian, C., and X. Zhang, 2019: Changes in temperature seasonality in China: human influences and internal variability. J. Climate, 32(19), 6237–6249

29. Linhao Zhong*, Lijuan Hua, Zhuguo Ma, Yao Yao, 2019: A quantitative study of moisture transport variation on the interdecadal variation of the summer precipitation in South China from 1979 to 2015, Climate Dynamics, 2019, 53:4743-4761.

30. Jiawei Li, Zhiwei Han, Xiaohong Yao, Zuxin Xie, Saichun Tan, 2019: The distributions and direct radiative effects ofmarine aerosols over East Asia in springtime. Science of the Total Environment, 651, 1913-1925.

31. Han Z, Li S, Atmospheric responses over Asia to sea ice loss in the Barents and Kara seas in midlate winter and early spring: a perspective revealed from CMIP5 data, doi: 10.13679/j.advps.2019.4.00001.

32. Luo M, Feng J*, Xu Z, Wang Yi, 2019: Evaluating the performance of five 20th-century reanalysis datasets in reproducing the severe drought in northern China during the 1920s-1930s. Theor. Appl. Climatol., 137(1-2): 187-199, doi: 0.1007/s00704-018-2591-5.

33. Wang Y, Chan A, Lau GNC, Li Q, Yang Y, Hung LamYim S*, 2019: Effects of urbanization and global climate change on regional climate in the Pearl River Delta and thermal comfort implications. International Journal of Climatology, 1, 1-11.

34. Wang Y, Feng J*, Zheng Z, Jin S, 2019: Sensitivity of the Weather Research and Forecasting Model to Radiation Schemes in China. Journal of Tropical Meteorology, 25, 201-210.

35. Bian Q, Xu Z, Zhao L, Zhang YF, Zheng H, Shi C, Zhang Sh, Xie C, and Yang Z*, 2019: Evaluation and intercomparison of multiple snow water equivalent products over the Tibetan Plateau. Journal of Hydrometeorology, 20(10), 2043–2055. https://doi.org/10.1175/JHM-D-19-0011.1.

36. Haifeng Su, Zhe Xiong*, Xiaodong Yan, Xingang Dai, 2019: An evaluation of two statistical downscaling models for downscaling monthly precipitation in the Heihe River basin of China. Theoretical and Applied Climatology, https://doi.org/10.1007/s00704-019-02925-6.

37. Li C, Wang C*, and Zhao T, 2019: Seasonal co-variability of dryness/wetness in China and global sea surface temperature. J. Climate, doi:10.1175/JCLI-D-19-0250.1.

38. Li C, and Zhao T*, 2019: Seasonal responses of precipitation in China to El Niño and positive Indian Ocean dipole modes. Atmosphere, 10, 372, doi: 10.3390/atmos10070372

39. Li C, Zhao T*, Shi C, Liu Z, 2019: Evaluation of daily precipitation product in China from the CMA global atmospheric interim reanalysis. J. Meteor. Res., 34(1), 1–20, doi: 10.1007/s13351-020-8196-9.

40. Li K, Zhang JY*, Yang K, Wu L, 2019: The Role of Soil Moisture Feedbacks for Future Summer Temperature Change over East Asia. Journal of Geophysical Research: Atmospheres [J]. DOI: 10.1029/2018JD029670.

41. Liang J, Yang Z*, Lin P, 2019: Systematic Hydrological Evaluation of the Noah-MP Land Surface Model over China. Advances in Atmospheric Sciences, 36(11), 1171-1187.

42. Xu, Xiyan, William Riley, Charles Koven, Gensuo Jia, 2019: Heterogeneous spring phenology shifts affected by climate: supportive evidence from two remotely sensed vegetation indices, Environmental Research Communications, 1(9): 091004, doi: 10.1088/2515-7620/ab3d79.

43. Dai A*, Luo D*, Song M, Liu J. Arctic amplification is caused by sea-ice loss under increasing CO2. Nature Communications. 2019; 10:121. http://doi.org/10.1038/s41467-018-07954-9.

44. Wang, Q. Y., J. H. Ye, Y. C. Wang, T. Zhang, W. K. Ran, Y. F. Wu, J. Tian, L. Li, Y. Q. Zhou, S. S. H. Ho, B. Dang, Q, Zhang, R. J. Zhang, Y. Chen, C. S. Zhu, and J. J. Cao, 2019: Wintertime Optical Properties of Primary and Secondary Brown Carbon at a Regional Site in the North China Plain, Environ. Sci. Technol., 53(21), 12389–12397, http://doi.org/10.1021/acs.est.9b03406.

45. Yonghong Hu, Gensuo Jia, Meiting Hou, Chunlei Zhao, Xiaoju Zhen, Yanhua Xu, 2019: Comparison of surface and canopy urban heat island in mega-cities of eastern China, ISPRS Journal of Photogrammetry and Remote Sensing 156: 160-168, doi: 10.1016/j.isprsjprs.2019.08.012.

46. Wang Su, Huang Gang*, Lin Jintai, Hu Kaiming, Wang Lin, Gong Hainan. 2019. Chinese Blue Days: A novel index and spatiotemporal variations. Environmental Research Letters, 14 074026.

47. Ho, K.-F., K.-C. Wu, X. Y. Niu, Y. F. Wu, C. S. Zhu, F. Wu, J. J. Cao, Z. X. Shen, T.-C. Hsiao, K.-J. Chuang, and H.-C. Chuang, 2019: Contributions of local pollution emissions to particle bioreactivity in downwind cities in China during Asian dust periods. Environ. Pollut., 245, 675–683, http://doi.org/10.1016/j.envpol.2018.11.035.

48. Wang, Q. Y., S. X. Liu, N. Li, W. T. Dai, Y. F. Wu, J. Tian, Y. Q. Zhou, M. Wang, S. S. H. Ho, Y. Chen, R. J. Zhang, S. Y. Zhao, C. S. Zhu, Y. M. Han, X. X. Tie, and J. J. Cao, 2019: Impacts of short-term mitigation measures on PM2.5 and radiative effects: a case study at a regional background site near Beijing, China. Atmos. Chem. Phys., 19, 1881–1899, http://doi.org/10.5194/acp-19-1881-2019.

49. Tao, J., Z. S. Zhang, Y. F. Wu, L. M. Zhang, Z. J. Wu, P. Cheng, L. G. Chen, R. J. Zhang, and J. J. Cao, 2019: Impact of particle number and mass size distributions of major chemical components on particle mass scattering efficiency in urban Guangzhou in southern China. Atmos. Chem. Phys., 19, 8471–8490, http://doi.org/10.5194/acp-19-8471-2019.

50. Che, H. Z., X. A. Xia, H. J. Zhao, O. Dubovik, B. N. Holben, P. Goloub, E. Cuevas-Agulló, V. Estelles, Y. Q. Wang, J. Zhu, B. Qi, W. Gong, H. L. Yang, R. J. Zhang, L. K. Yang, J. Chen, H. Wang, Y. Zheng, K. Gui, X. C. Zhang, and X. Y. Zhang, 2019: Spatial distribution of aerosol microphysical and optical properties and direct radiative effect from the China Aerosol Remote Sensing Network. Atmos. Chem. Phys., 19(18), 11843–11864, https://doi.org/10.5194/acp-19-11843-2019.

51. Yu S, Xia JJ, Yan ZW, Zhang AZ, Xia Y, Guan DB, Han JR, Wang J, Chen L, Liu YK 2019: Loss of work productivity in a warming world: Differences between developed and developing countries. Journal of Cleaner Production, 208, 1219-1225.

52. Sun, J., Z. X. Shen, L. M. Zhang, Y. L. Lei, X. S. Gong, Q. Zhang, T. Zhang, H. M. Xu, S. Cui, Q. Y. Wang, J. J. Cao, J. Tao, N. N. Zhang, and R. J. Zhang, 2019: Chemical source profiles of urban fugitive dust PM2.5 samples from 21 cities across China. Sci. Total Environ., 649, 1045–1053. https://doi.org/10.1016/j.scitotenv.2018.08.374.

53. Yang, Y., D. S. Ji, J. Sun, Y. H. Wang, D. Yao, S. M. Zhao, X. N. Yu, L. M. Zeng, R. J. Zhang, H. Zhang, Y. H. Wang, and Y. S. Wang, 2019: Ambient volatile organic compounds in a suburban site between Beijing and Tianjin: Concentration levels, source apportionment and health risk assessment. Sci. Total Environ, 695, 133889, https://doi.org/10.1016/j.scitotenv.2019.133889.

54. Zheng, Y., H. Z. Che, X. A. Xia, Y. Q. Wang, H. Wang, Y. F. Wu, J. Tao, H. J. Zhao, L. C. An, L. Li, K. Gui, T. Z. Sun, X. P. Li, Z. Z. Sheng, C. Liu, X. Y. Yang, Y. X. Liang, L. Zhang, C. Liu, X. Kuang, S. Luo, Y. C. You, and X. Y. Zhang, 2019: Five-year observation of aerosol optical properties and its radiative effects to planetary boundary layer during air pollution episodes in North China: Intercomparison of a plain site and a mountainous site in Beijing. Sci. Total Environ., 674, 140–158, http://doi.org/10.1016/j.scitotenv.2019.03.418.

55. Luo, L., Y. F. Wu, H. Y. Xiao, R. J. Zhang, H. Lin, X. L. Zhang, and S.-J. Kao, 2019: Origins of aerosol nitrate in Beijing during late winter through spring. Sci. Tot. Environ., 653, 776–782, http://doi.org/10.1016/j.scitotenv.2018.10.306.

56. Li Jie, Zhiwei Han, Jiawei Li, Ruiting Liu, Yunfei Wu, Lin Liang, Renjian Zhang, 2019: The formation and evolution of secondary organic aerosol during haze events in Beijing in wintertime. Science of the Total Environment, https://doi.org/10.1016/j.scitotenv.2019.134937.

57. Xiaoma Li, Yuyu Zhou, Sha Yu, Gensuo Jia, Huidong Li, Wenliang Li, 2019. Urban heat island impacts on building energy consumption: A review of approaches and findings, Energy 174: 407-419, doi: 10.1016/j.energy.2019.02.183.

58. Li, Y., Li, Z., Zhang, Z., Chen, L., Kurkute, S., Scaff, L., Pan, X., 2019: High-resolution regional climate modeling and projection over western Canada using a weather research forecasting model with a pseudo-global warming approach, Hydrol. Earth Syst. Sci., 23, 4635–4659.

59. Li, W. J., Y. P. He, Y. W. Zhang, J. W. Su, C. G. Chen, C. W. Yu, R. J. Zhang, and Z. L. Gu, 2019: LES simulation of flow field and pollutant dispersion in a street canyon under time-varying inflows with TimeVarying-SIMPLE approach. Building Environ., 157, 185–196, https://doi.org/10.1016/j.buildenv.2019.04.049.

60. Xu, W., Sun Chenghu, Zuo Jingqing, Ma Zhuguo, Li Weijing, Yang Song, 2019: Homogenization of monthly ground surface temperature in China during 1961–2016 and performances of GLDAS reanalysis products. Journal of Climate, 32, 1121-1135.

61. Luo B, Wu L, Luo D*, Dai A, Simmonds I. The winter midlatitude-Arctic interaction: effects of North Atlantic SST and high-latitude blocking on Arctic sea ice and Eurasian cooling. Climate Dynamics. 2019; 52, 2981–3004. http://doi.org/10.1007/s00382-018-4301-5.

62. Ali S*, Eum H, Cho J, Dan L, Khan F, Dairaku K, Shresth M L, Hwang S, Nasim W, Khan I A, Fahad S., 2019.: Assessment of climate extremes in future projections downscaled by multiple statistical downscaling methods over Pakistan, Atmospheric Research, 222, 114–133.

63. Zhang Shuang, Wu Jian, Zhao Deming, and Xia Lan, 2019: Characteristics and reasons for light rain reduction in Southwest China in recent decades. Progress in Physical Geography 43(5): 643-665, doi: 10.1177/0309133319861828. 

64. Cao  FQ, Gao T *, Dan L, Ma ZG, Chen XL, Zou LW, Zhang LX, 2019: Synoptic-scale atmospheric circulation anomalies associated with summertime daily precipitation extremes in the middle–lower reaches of the Yangtze River Basin, Climate Dynamics, https://doi.org/10.1007/s00382-019-04687-3.

65. Huang Fang, XU Zhongfeng, Guo Weidong, 2019: Evaluating vector winds in the Asian-Australian monsoon region simulated by 37 CMIP5 models. Climate Dynamics, 53: 491. https://doi.org/10.1007/s00382-018-4599-z.

66. Wu J, Zhang PW, Zha JL, Zhao DM, and Lu WX, 2018: Evaluating the long-term changes in temperature over the low-latitude plateau in China using a statistical downscaling method, Climatic Dynamics, 52: 4269-4292, doi: 10.1007/s00382-018-4379-9.

67. Tian, P., D. T. Liu, M. Y. Huang, Q. Liu, D. L. Zhao, L. Ran, Z. Z. Deng, Y. F. Wu, S. Z. Fu, K. Bi, Q. Gao, H. He, H. W. Xue, and D. P. Ding, 2019: The evolution of an aerosol event observed from aircraft in Beijing: An insight into regional pollution transport. Atmos. Environ., 206, 11–20, http://doi.org/10.1016/j.atmosenv.2019.02.005.

68. Zhiwei Han, Jiawei Li, Xiaohong Yao, Saichun Tan, 2019: A regional model study of the characteristics and indirect effects of marine primary organic aerosol in springtime over East Asia. Atmospheric Environment, 197, 22–35.

69. Ludescher J., Yuan N.*, Bunde A., 2019: Detecting the statistical significance of the trends in the Antarctic sea ice extent: an indication for a turning point, Climate Dynamics, 53, 237-244.

70. Xiong F., Yuan N.*, Ma X., Lu Z., Gao J., 2019: On memory and non-memory parts of surface air temperatures over China: can they be simulated by decadal hindcast experiments in CMIP5? Climate Dynamics, 52, 855-864.

71. Cao, FQ, Gao, T, Dan, L.; Ma, ZG., et al., 2019: Synoptic-scale atmospheric circulation anomalies associated with summertime daily precipitation extremes in the middle-lower reaches of the Yangtze River Basin. Climate Dynamics, 53(5-6), 3109-3129.

72. Zhong Linhao, Lijuan Hua, Ma Zhuguo, Yao Yao, 2019: A quantitative study of moisture transport variation on the interdecadal variation of the summer precipitation in South China from 1979 to 2015. Climate Dynamics, 53, 4743.

73. Tong X, Yan ZW, Xia JJ, Lou X 2019: Decisive atmospheric circulation indices for July–August precipitation in North China based on tree models. Journal of Hydrometeorology, 20: 1707-1720.

74. Hu, Z, Xu, Z, Ma, Z*, Mahmood, R, Yang, Z, 2019: Potential surface hydrologic responses to increases in greenhouse gas concentrations and land use and land cover changes. International Journal of Climatology, 39, 814–827.

75. Jia, X., Quan, J., Zheng, Z., Liu, X., Liu, Q., He, H., Liu, Y., 2019: Impacts of anthropogenic aerosols on fog in North China Plain. Journal of Geophysical Research: Atmospheres, 124, 252– 265.

76. Li M, Luo D, Yao Y*, Zhong L. Large-scale atmospheric circulation control of summer extreme hot events over China. Int J Climatol. 2019;1–21. https://doi.org/10.1002/joc.6279.

77. Wei WG, Yan ZW, Jones PD 2019: A decision-tree approach to seasonal prediction of extreme precipitation in eastern China. International Journal of Climatology.

78. Yu S, Yan ZW, Freychet N, Li Z 2019: Trends in summer heatwaves in central Asia from 1917 to 2016: association with large-scale atmospheric circulation patterns. International Journal of Climatology.

79. Jia, M. W., X. H. Cheng, T. L. Zhao, C. Z. Yin, X. Z. Zhang, X. H. Wu, L. M. Wang, and R. J. Zhang, 2019: Regional Air Quality Forecast Using a Machine Learning Method and the WRF Model over the Yangtze River Delta, East China. Aerosol Air Qual. Res., 19(7), 1602–1613, http://doi.org/10.4209/aaqr.2019.05.0275.

80. Duan, J. Y., R. Lyu, Y. Y. Wang, X. Xie, Y. F. Wu, J. Tao, T. T. Cheng, Y. H. Liu, Y. R. Peng, R. J. Zhang*, Q. S. He, W. Gao, X. M. Zhang, and Q. Zhang, 2019: Particle liquid water content and aerosol acidity acting as indicators of aerosol activation changes into cloud condensation nuclei (CCN) during pollution eruption in Guangzhou of South China. Aerosol Air Qual. Res., 19, 26622670, http://doi.org/10.4209/aaqr.2019.09.0476.

81. Wang YL, Feng JM*, Dan L , Lin S, Tian J, 2019: The impact of uniform and nonuniform CO2 concentrations on global climatic change. Theor Appl Climatol, https://doi.org/10.1007/s00704-019-02924-7.

82. Xie F., Yuan N.*, Qi Y., Wu W., 2019: Is long-term climate memory important in temperature/precipitation predictions over China, Theoretical and Applied Climatology, 137, 459-466.

83. Fuying Qin, Gensuo Jia, Jie Yang, 2019: Decadal decline of summer precipitation fraction observed in the field and from TRMM satellite data across the Mongolian Plateau, Theoretical and Applied Climatology 137(1): 1105-1115, doi: 10.1007/s00704-018-2655-6.

84. Zhang, Q., Z. X. Shen, Y. L. Lei, T. Zhang, Y. L. Zeng, Z. Ning, J. Sun, D. Westerdahl, H. M. Xu, Q. Y. Wang, J. J. Cao, and R. J. Zhang, 2019: Optical properties and source identification of black carbon and brown carbon: Comparison of winter and summer haze episodes in Xi’an, northwest China.  Environ. Sci.–Proc. Imp., https://doi.org/10.1039/C9EM00320G.

85. Wu W., Yuan N.*, Xie F., Qi Y., 2019: Understanding long-term persistence and multifractal behaviors in river runoff: A detailed study over eastern China, Physica A, 533, 122042.

86. Cao FQ, Gao T *, Dan L, Xie L, Gong X, 2019: Variability of Summer Precipitation Events Associated with Tropical Cyclones over Mid-Lower Reaches of Yangtze River Basin: Role of the El Niño–Southern Oscillation. Atmosphere, 10, 256; doi:10.3390/atmos10050256.

87. Fu CB, Dan L*, Lin XB, Yang FQ, 2019: Long-term change of total cloud cover and its possible reason over South China during 1960–2012. Atmos Sci Lett. 2019; 20: e943. https://doi.org/10.1002/asl.943.

88. Cao Fuqiang, Tao Gao, Li Dan, Zhuguo Ma, Xiujing Yang, Fuqiang Yang, 2019: Contribution of large-scale circulation anomalies to variability of summer precipitation extremes in northeast China. Atmospheric Science Letters, 1-11.

89. Zhang, X., Li M.X., Ma Z.G. et al, 2019: Assessment of an evapotranspiration deficit drought index in relation to impacts on ecosystems. Advances in Atmospheric Sciences, 36(11), 1273-1287.

90. Gao LH, Wei FY, Yan ZW, Ma J, Xia JJ 2019: A study of objective prediction for summer precipitation patterns over eastern China based on multinomial logistic regression model. Atmosphere, 10 (4) 213.

91. Zhang, Y. W., S. He, Z. L. Gu, N. Wei, C. W. Yu, X. X. Li, R. J. Zhang, X. Sun, and D. Zhou, 2019: Mesurement, normalization and mapping of urban-scale wind environment in Xi'an, China. Indoor Built Environ., 28(9), 1171-1180, https://doi.org/10.1177/1420326X18804103.

92. Fu CB, Dan Li*, Tang JX, Yang W, 2019: Spatiotemporal variation of NO2 and sub-regional transport during winter pollution events in Haikou, China. Journal of Tropical Meteorology, 25(3), 365-372.

93. Guan X, Ma J, Huang J, Huang R, Zhang L, Ma Z., 2019: Impact of oceans on climate change in drylands, Science China Earth Sciences, 62, 891–908.

94. Ogou F. K., Yang Q, Duan Y, Ma Z, 2019: Comparative analysis of interdecadal precipitation variability over central North China and sub Saharan Africa. Atmospheric and Oceanic Science Letters, 12(3), 201-207.

95. Li HC, Yu C, Xia JJ, Wang YC, Zhu J, Zhang PW, 2019: A Model Output Machine Learning Method for Grid Temperature Forecasts in the Beijing Area, Advances in Atmospheric Sciences, 36(10): 1156-1170.

96. Jinling Piao, Wen Chen*, Lin Wang, Francesco S.R. Pausata, Qiong Zhang. 2019. Northward extension of the East Asian summer monsoon during the midHolocene. Global and Planetary Change, 184, 103046.

97. Yang Xiujing, Dan Li*, Yang Fuqiang, Peng Jing, Li Yueyue, Gao Dongdong, Ji Jinjun and Huang Mei, 2019. The integration of nitrogen dynamics into a land surface model. Part 1: model description and site-scale validation, Atmospheric and Oceanic Science Letters, 12(1), 50-57.

98. Lin S, Wang G*, Feng J*, Dan L, Sun X, Hu Z,... & Xiao, X., 2019: A Carbon Flux Assessment Driven by Environmental Factors over the Tibetan Plateau and Various Permafrost Regions. Journal of Geophysical Research: Biogeosciences, 124(5)1132-1147, doi: 10.1029/2018JG004789.

99. Wang Y, Feng J*, Zheng Z, Jin S, 2019: Sensitivity of the Weather Research and Forecasting Model to radiation schemes in China. Journal of Tropical Meteorology, 25: 201-210.

100. Liu Y, Feng J, Yang Z, Hu Y, Li J, 2019: Gridded Statistical Downscaling Based on Interpolation of Parameters and Predictor Locations for Summer Daily Precipitation in North China, J. App. Meteor. Clim., 58: 2295-2311, doi: 10.1175/JAMC-D-18-0231.1.

101. Liu Y, Feng J, Shao Y, Li J, 2019: Identify optimal predictors of statistical downscaling of summer daily precipitation in China from three-dimensional large-scale variables, Atmospheric Research, 224: 99-113, doi: 10.1016/j.atmosres.2019.03.022.

102. Liu Y, Feng J, Liu X, Zhao Y2019: A method for deterministic statistical downscaling of daily precipitation at a monsoonal site in Eastern China, Theor. Appl. Clim. 135(1-2): 85-100, doi: 10.1007/s00704-017-2356-6.

103. Wu L, Qin F, Feng J, Huang J, 2019: Regional climate effects of plastic film mulch over the cropland of arid and semi-arid regions in Northwest China using a regional climate model, Theoretical and Applied Climatology, https://doi.org/10.1007/s00704-019-02974-x.

104. Zhou Q, Zhang Y, Li B, Li L, Feng J, Jia S, Lv S, Tao F, Guo J, 2019: Cloud-base and cloud-top heights determined from a ground-based cloud radar in Beijing, China, Atmospheric Enviroment, 201: 381-390. doi: 10.1016/j.atmosenv.2019.01.012.

105. He X, Wang J*, Feng J, Yan Z, Miao S, Zhang Y, Xia J, 2019: Observational and modeling study of interactions between urban heat island and heatwave in Beijing. Journal of Cleaner Production, published online, DOI: 10.1016/j.jclepro.2019.119169.

106. Jin S, Chen Y, Lin M, Cui X, Wang Y*, 2019: Footprint of sea surface temperature changes in Skipjack Tuna (katsuwonas pelamis) in the western and central Pacific Ocean. Fresenius Environmental Bulletin, 28, 1448-1456.

107. Jin S, Han Z, Liao X, Xu G, Wu Y, Wang Y, Chen Y*, 2019: Reduced spring festival effects on the air quality in Beijing: evidence from 2014 to 2019. Fresenius Environmental Bulletin, 28, 10242-10246.

108. Liang Y, Wang Y*, Zhao Y, Lu Y, Liu X, 2019: Analysis and Projection of Flood Hazards over China. Water, 11.

109. Liu Y, Lu H, Zhou D, Pan C, Liu P, Xiong Zh, and Sun G, 2019Identifying a transition climate zone in an arid river basin using the evaporative stress index, Nat. Hazards Earth Syst. Sci., 19, 2281-2294  https://doi.org/10.5194/nhess-19-2281-2019.

110. Zhang J, Zhao T *, Dai A, and Zhang W, 2019: Detection and attribution of atmospheric precipitable water changes since the 1970s over China. Scientific Reports, doi: 10.1038/s41598-019-54185-z.

111. Zhang J, and Zhao T*, 2019: Historical and future changes of atmospheric precipitable water over China simulated by CMIP5 models. Climate Dynamics, 52(11), 6969-6988, doi: 10.1007/s00382-018-4559-7.

112. Zheng, H., Yang, Z.-L.*, Lin, P., Wei, J., Wu, W.-Y., Li, L., et al. 2019: On the sensitivity of the precipitation partitioning into evapotranspiration and runoff in land surface parameterizations. Water Resources Research, 55(1), 95–111.

113. Almut Arneth, et al. 2019: IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse gas fluxes in Terrestrial Ecosystems - Summary for Policymakers. Intergovernmental Panel on Climate Change, Geneva.

114. Zhang Yuxuan, Li Meng, Cheng Yafang, Geng Guannan, Hong Chaopeng, Li Haiyan, Li Xin, Tong Dan, Wu Nana, Zhang Xin, Zheng Bo, Zheng Yixuan, Bo Yu, Su Hang, and Zhang Qiang, 2019: Modeling the aging process of black carbon during atmospheric transport using a new approach: a case study in Beijing. Atmos. Chem. Phys., 19, 9663–9680, doi: 10.5194/acp-19-9663-2019.

115. Dan Tong, Guannan Geng, Kejun Jiang, Jing Cheng, Yixuan Zheng, Chaopeng Hong, Liu Yan, Yuxuan Zhang, Xiaoting Chen, Yu Bo, Yu Lei, Qiang Zhang, Kebin He, 2019: Energy and emission pathways towards PM2.5 air quality attainment in the Beijing-Tianjin-Hebei region by 2030. Science of the Total Environment, 692, 361–370.

116. Tao Xue, Jun Liu, Qiang Zhang, Guannan Geng, Yixuan Zheng, Dan Tong, Zhu Liu, Dabo Guan, Yu Bo, Tong Zhu, Kebin He, Jiming Hao, 2019: Rapid improvement of PM2.5 pollution and associated health benefits in China during 2013–2017. Science China Earth Sciences, 1674-7313, doi: 10.1007/s11430-018-9348-2.

117. Ruili Wu, Fei Liu, Dan Tong, Yixuan Zheng, Yu Lei, Chaopeng Hong, Meng Li, Jun Liu, Bo Zheng, Yu Bo, Xiaoting Chen, Xin Li and Qiang Zhang, 2019: Air quality and health benets of Chinas emission control policies on  coal-red power plants during 20052020. Environ. Res. Lett., 14: 094016, doi: 10.1088/1748-9326/ab3bae.

118. Meng Li, Qiang Zhang, Bo Zheng, Dan Tong, Yu Lei, Fei Liu, Chaopeng Hong, Sicong Kang, Liu Yan, Yuxuan Zhang, Yu Bo, Hang Su, Yafang Cheng and Kebin He, 2019: Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990–2017: drivers, speciation and ozone formation potential. Atmos. Chem. Phys., 19, 8897–8913, doi: 10.5194/acp-19-8897-2019.

119. 袁乃明, 杨庆, 刘健, 陶丽, 冯锦明, 马柱国, 2019: 年代际气候事件的归因及预估研究进展[J]. 中国基础科学21(3): 36-44.

120. 钱诚, 张文霞,2019CMIP6检测归因模式比较计划(DAMIP)概况与评述 [J]. 气候变化研究进展, 15 (5): 469475

121. 高冬冬丹利*,范广洲,彭静杨秀静杨富强李悦悦2019. 地球系统模式中植被净初级生产力百年尺度时空变化及其与气候的关系, 气候与环境研究[J].,doi: 10.3878/j.issn.1006-9585.2018.1805.

122. 高冬冬, 丹利*, 范广洲, 田汉勤, 彭静, 杨秀静, 杨富强, 李悦悦. 2019. 中国植被碳通量与氮沉降通量百年尺度时空变化及其与气候的关系[J]. 中国科学, https://doi.org/10.1360/N072018-00289

123. 王芳, 熊喆*, 延晓冬, . 2019:区域气候与中国柳属物种多样性格局的关系研究 [J]. 气候与环境研究24 (2): 262−276.

124. 周心河, 熊喆*2019: 区域气候模式不同积云对流参数化方案对新疆气候模拟的影响研究 [J]. 气候与环境研究24 (2): 169−185.

125. 韩作强, 张献志, 芦璐, 郑子彦, 2019: 厄尔尼诺现象对黄河流域汛期降水的影响分析[J]. 气象与环境科学, 42(1): 73-78.

126. 祝从文, 刘伯奇, 左志燕, 袁乃明, 刘舸, 2019: 东亚夏季风次季节变化研究进展[J]. 应用气象学报30: 401-415.

127. 韩作强, 张献志, 芦璐, 郑子彦, 2019: 厄尔尼诺现象对黄河流域汛期降水的影响分析[J]. 气象与环境科学, 42(1): 73-78.

128. 祝从文, 刘伯奇, 左志燕, 袁乃明, 刘舸, 2019: 东亚夏季风次季节变化研究进展[J]. 应用气象学报30: 401-415.

129. 邓慧平, 丹利*,王倩. 2019. 西南亚高山区流域植被演替与地表水量平衡对气候变化的敏感性模拟[J]. 水资源与水工程学报. 30(3), 1-8.

130. 符传博,丹利*冯锦明彭静,营娜,201919602012 年中国地区总云量时空变化及其与气温和水汽的关系[J]. 大气科学, 43 (1)87−98

131. 符传博,唐家翔*丹利,马明明,201920142016年海口市空气质量概况及预报效果检验[J]. 环境科学学报,39(1)270-278

132. 窦以文,丹利*,胡保昆,史君卿. 2019:霾天气影响下的京津冀气候变化特征与成因[J].中国环境科学39(2)506-513.

133. 唐家翔*, 符传博, 丹利, 林晓斌. 2019. 海南地区一次霾过程特征及污染物潜在源区分析研究[J]. 环境科学与管理. 44(6), 33-38.

134. 王姝, 郑辉*, 林佩蓉, 郑兴, & 杨宗良, 2019: NoahMP-RAPID在高海拔山地流域的模拟检验与误差分析[J]. 科学通报, 64(4), 444455.

 

已接收论文

1. Yuan N.*, Lu Z., 2019: Warming reduces predictability? Nature Climate Change, in press, doi:10.1038/s41558-019-0669-4.

2. Abubakar Omer, Ma Z, Zheng Z, & Farhan Saleem, 2019: Natural and anthropogenic influences on the recent droughts in Yellow River Basin, China. Science of the Total Environment.

3. Zhang A, Jia G*, Satellite observed reversal in trends of tropical and subtropical water availability. International Journal of Applied Earth Observations and Geoinformation.

4. Ilyas, S., X. Xu, G. Jia, A. Zhang, 2019: Interannual variability of global wetlands in response to El Niño Southern Oscillations (ENSO) and land-use. Front. Earth Sci., doi: 10.3389/feart.2019.00289.

5. Wang J, Chen Y, Simon F, Yan Z, Zhai P, Feng J, Xia J, 2019: Anthropogenically-driven increases in the risks of summertime compound hot extremes, Nature Communications.

6. Jing Peng, Ying-Ping Wang*, Benjamin Z Houlton, Li Dan and Bernard Pak, Xiba Tang, Global carbon sequestration is highly sensitive to model-based formulations of nitrogen fixation, Global Biogeochemical Cycles.

7. Wang Y et al, 2019: The effect of urbanization and climate change on the mosquito population in the Pearl River Delta region of China. International Journal of Biometeorology.

8. Zhang Shuang, Wu Jian, Fan Wenxuan, Yang Qidong, Zhao Deming, 2019: Review of aerosol optical depth retrieval using visibility data. Earth-Science Reviews, doi:10.1016/j.earscirev.2019.102986.

9. Tao, J., L. M. Zhang, Y. F. Wu*, and Z. S. Zhang, 2019: Evaluation of the IMPROVE formulas based on Mie model in the calculation of particle scattering coefficient in an urban atmosphere. Atmos. Environ., in press, https://doi.org/10.1016/j.atmosenv.2019.117116.

10. Duan, J. Y., R. Lyu, Y. Y. Wang, X. Xie, Y. F. Wu, J. Tao, T. T. Cheng, Y. H. Liu, Y. R. Peng, R. J. Zhang*, Q. S. He, W. Gao, X. M. Zhang, and Q. Zhang, 2019: Particle liquid water content and aerosol acidity acting as indicators of aerosol activation changes into cloud condensation nuclei (CCN) during pollution eruption in Guangzhou of South China. Aerosol Air Qual. Res., in press, http://doi.org/10.4209/aaqr.2019.09.0476.

11. Zhang, Q., Z. X. Shen, Y. L. Lei, T. Zhang, Y. L. Zeng, Z. Ning, J. Sun, D. Westerdahl, H. M. Xu, Q. Y. Wang, J. J. Cao, and R. J. Zhang, 2019: Optical properties and source identification of black carbon and brown carbon: Comparison of winter and summer haze episodes in Xi’an, northwest China.  Environ. Sci.–Proc. Imp., in press, https://doi.org/10.1039/C9EM00320G.

12. Feng Y, Que L, Feng J, 2019: Spatial-Temporal Characteristics of Wind Energy Resources from 1960 to 2016 over China, AOSL.

13. 赵卉忱贾根锁,王鹤松,等. 中国半干旱区草甸草原和典型草原碳通量日变化特征. 气候与环境研究2019.

14. 田亚林、李雪梅、李珍、秦埼瑞,2020:天山山区1980-2017年不同形态降水时空变化特征[J]. 干旱区地理.

15. 梁琳韩志伟李嘉伟李洁,高艳,武云飞2019,北京春季沙尘和霾期间气溶胶的对比模拟研究, 气候与环境研究

16. 马强、宫密秘、杨晓霞、万梅、张征宇、施垌垌、雷宇、薄宇, 2019: 嘉兴市人为源大气污染物排放清单研究. 环境污染与防治.

17. 马强、陈天然、陈翠红、万梅、熊传芳、雷宇、薄宇, 2019: 嘉兴市大气污染特征及区域传输影响研究. 环境污染与防治.

18. 韦玮, 王林*、陈权亮, 刘毓赟, 李珍, 2019: ,国前冬和后冬的划分及其气温的年际变异[J]. 大气科学.